
12 570684 Ch08.qxd 3/31/04 2:52 PM Page 104

104 Part II: Run and Scream from Variables and Math

Carefully edit your SPEED.C source code so that it matches what you see
listed here. Save the file to disk again and then recompile. It has the same
output because your only change was to make the value 55 a real, live con­
stant rather than a value inside the program.

� Again, the key is that it takes only one, quick edit to change the speed
limit. If you edit Line 3 to read

#define SPEED 45

you have effectively changed the constant value 45 in three other places
in the program. This change saves some time for the SPEED.C program —
but it saves you even more time for longer, more complex programs that
also use constant values.

� Symbolic constant is C technospeak for a constant value created by the
#define directive.

The #define directive

The #define construction (which is its official name, though I prefer to call
it a directive) is used to set up what the C lords call a symbolic constant — a
shortcut name for a value that appears over and over in your source code.
Here’s the format:

#define SHORTCUT value

SHORTCUT is the name of the constant you’re defining. It’s traditional to name
it like a variable and use ALL CAPS (no spaces).

value is the value the SHORTCUT takes on. It’s replaced by that value globally
throughout the rest of your source code file. The value can be a number, equa­
tion, symbol, or string.

No semicolon is at the end of the line, but notice that the line absolutely must
begin with a pound sign. This line appears at the beginning of your source
code, before the main() function.

You should also tack a comment to the end of the #define line to remind you
of what the value represents, as in this example:

#define SPEED 55 /* the speed limit */

Here, SPEED is defined to be the value 55. You can then use SPEED anywhere
else in your program to represent 55.

